A Worldwide Ionospheric Model for Fast Precise Point Positioning
Adrià Rovira-Garcia, José Miguel Juan, Jaume Sanz, and Guillermo González-Casado

Abstract—Fast precise point positioning (Fast-PPP) is a satellite-based navigation technique using an accurate real-time ionospheric modeling to achieve high accuracy quickly. In this paper, an end-to-end performance assessment of Fast-PPP is presented in near-maximum Solar Cycle conditions; from the accuracy of the Central Processing Facility corrections, to the user positioning. A planetary distribution of permanent receivers including challenging conditions at equatorial latitudes, is navigated in pure kinematic mode, located from 100 to 1300 km away from the nearest reference station used to derive the ionospheric model. It is shown that satellite orbits and clocks are quite accurate to few centimeters and few tenths of nanoseconds, used in conjunction with an ionosphere with an accuracy better than 1 Total Electron Content Unit (16 cm in L1) reduce the convergence time of dual-frequency Precise Point Positioning, to decimeter-level (3-D) solutions. Horizontal convergence times are shortened 40% to 90%, whereas the vertical components are reduced by 20% to 60%. A metric to evaluate the quality of any ionospheric model for Global Navigation Satellite System is also proposed. The ionospheric modeling accuracy is directly translated to mass-market single-frequency users. The 95th percentile of horizontal and vertical accuracies is shown to be 40 and 60 cm for single-frequency users and 9 and 16 cm for dual-frequency users. The tradeoff between the formal and actual positioning errors has been carefully studied to set realistic confidence levels to the corrections.

Index Terms—Global Navigation Satellite System (GNSS), precise point positioning (PPP), real-time ionospheric corrections, undifferenced ambiguity fixing.

I. INTRODUCTION

TWO state-of-the-art high-precision positioning services offer positioning accuracy at the centimeter level: Real-Time Kinematics (RTK) and Precise Point Positioning. Both rely on carrier-phase measurements, typically two orders of magnitude more precise than codes, but they contain the carrier-phase ambiguity as an additional unknown. Classical (two-receiver baseline) RTK [1] uses the time-tagged measurements of all satellites in view at a close reference receiver to compensate for most of the delays affecting the Global Navigation Satellite System (GNSS) signals. Thence, the relative baseline vector to a reference station is estimated to centimeter-level accuracy, in some tens of seconds.

Precise relative positioning is limited by the spatial error decorrelation. Even with a benign ionosphere, the assumption of a differential ionospheric delay being either negligible between the rover and the reference receiver is not valid for baselines greater than a few tens of kilometers. Baselines are enlarged using the network atmospheric modeling of the Network RTK (NRTK) [2] approach. However, a large number of base stations would be needed to provide a planetary service. Moreover, if measurements were broadcast using the Radio Technical Commission for Maritime Services format [3], unaffordable bandwidth would be required.

PPP [4] is a high-accuracy technique in undifferenced mode for dual-frequency users with typical accuracies in the order of a decimeter (in kinematic mode) or centimeter (in static mode). It is based on using satellite orbits and clocks significantly more accurate than those broadcasts by the GNSS satellites. They are calculated using data from a permanent receiver network, e.g., the International GNSS Service (IGS) [5], and an accurate modeling of the measurements down to the centimeter level. Since orbits and clocks are satellite-dependent, global coverage is achieved with limited bandwidth. A review of current commercial PPP services can be found in [6].

In PPP, the ionospheric delay is removed (up to 99.9% [7]) due to the dual-frequency ionospheric-free combination. However, the Classical PPP requires more time to achieve high-accuracy navigation than RTK [8], since the ambiguities are estimated as real numbers (i.e., float ambiguities), instead of fixed integers as in relative positioning. Indeed, sufficient change must be observed in satellite geometry to decorrelate (separate) float ambiguities from the other parameters being estimated in the navigation filter. The main drawback of PPP is this convergence, which depends on satellite geometry. Generally, it takes the best part of 1 h with Global Positioning System (GPS), although the process is shorter in full mult constellation environments.

The further developments presented in [9]–[12] added to PPP the capability of undifferenced ambiguity fixing. The convergence time drawback of PPP was tackled in [13], due to an accurate regional ionospheric modeling based on (GNSS) data. This last technique, known as Fast Precise Point Positioning (Fast-PPP), was invented by the Research group of Astronomy and Geomatics (gAGE/UPC). It is protected by several international patents [14] funded by the European Space Agency (ESA), including also the use of triple-frequency signals [13].
TABLE I
OVERVIEW OF FAST-PPP CPF CORRECTIONS

<table>
<thead>
<tr>
<th>Correction</th>
<th>Update time</th>
<th>Content</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>5s</td>
<td>Satellite Clocks</td>
<td>Classic PPP</td>
</tr>
<tr>
<td>Slow</td>
<td>300s</td>
<td>Satellite Orbits, Satellite DCB, Fractional part of ambiguities</td>
<td>Undifferenced Ambiguity Fixing</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>300s</td>
<td>Unambiguous VTEC grid</td>
<td>Fast-PPP</td>
</tr>
</tbody>
</table>

In this paper, Fast-PPP is extended to a planetary scale. We test how permanent receivers, treated as rovers, reduce the convergence time of their navigation solution (improving the accuracy since any cold start). The Fast-PPP enhancement is assessed against current ionosphere-free solutions; not only for dual-frequency receivers that can use the aforementioned PPP, but also for single-frequency receivers that can use the Group and Phase Ionospheric Calibration (GRAPHIC) technique described in [15].

The structure of this paper is the following: in Section II, we describe how the Fast-PPP Central Processing Facility (CPF) is implemented and we list all the products that delivers. The accuracy of the geodetic corrections (satellite orbits and clocks) is assessed in the Section III. The Fast-PPP ionospheric model is tested with a novel scheme in the Section IV. The user strategy to combine all the externally computed corrections with the GNSS measurements is detailed in Section V. Fast-PPP single- and dual-frequency navigation results are assessed in Section VI, in terms of convergence time, accuracy and confidence in the solution. Finally, Section VII summarizes the results.

II. FAST-PPP CPF

The different products listed in Table I are computed in a unique CPF developed by the authors. Three Kalman filters (fast, slow, and iono) run in parallel, fed with GNSS data from three different networks of permanent receivers globally distributed (see Fig. 1). The slow filter uses all stations shown in black to estimate slow-varying satellite parameters: the Differential Code Biases (DCBs), the fractional ambiguities and the satellite orbits. The slow filter corrects (i.e., adjusts) the predicted IGS Ultra-Rapid (IGU) orbits [16] with GNSS measurements using the Hill coefficients, following [17]. Due to the accurate geodetic modeling, the slow filter is able to fix the carrier-phase ambiguities: this output will be used by the other two filters. The fast filter uses the data from the blue subset of receivers to estimate the satellite and receiver clocks as white-noise processes on a much shorter update time. Finally, the third (iono) filter uses data from the red network of stations to refine the DCBs and to estimate the parameters of the Fast-PPP ionospheric model, using the strategy later detailed in Section V.

III. FAST-PPP ORBIT AND CLOCK CORRECTIONS ASSESSMENT

The accuracy of the real-time Fast-PPP orbits and clocks is assessed in Fig. 2 with respect to the most accurate determinations from IGS, i.e., the final products. Available approximately with 15 days of latency, IGS final satellite orbits and clock are accurate to 2.5 cm and 0.08 ns [16], respectively.

The top plot shows the root mean square (RMS) of the difference between the satellite clocks of Fast-PPP (real time) and the IGS final values. The 24 h RMS is 0.22 ns (~6 cm). The bottom plot shows the RMS of the 3-D orbit difference of IGS final orbits versus the Fast-PPP real-time estimates (circles) and the predicted IGU orbits (crosses). Fast-PPP orbit error is maintained at 3.9 cm, correcting the degradation of IGU until a new orbit set is delivered. This occurs every 6 h with a typical delay of 3 h (i.e., the set of orbits predicted at 00h becomes available at 03h).

The Fast-PPP orbit and clock accuracies are comparable with the IGS Real-Time Pilot Project (IGS-RTPP) [18] combined...
product. Indeed, during the experiment (Day of Year (DoY) 150 of 2011) the accuracies of the IGS-RTPP were 2.7 cm and 0.21 ns for orbits and clocks, respectively, with respect to IGS rapid products. Differences between rapid and final IGS products are negligible [16].

IV. FAST-PPP IONOSPHERIC CORRECTIONS

The convergence time of PPP and GRAPHIC is strongly dependent on the code measurements, which are unambiguous but noisy. This noise slows down the carrier-phase ambiguity estimation process after a user cold start or a cycle slip. The core of Fast-PPP is the capability to calculate real-time ionospheric delays, namely, Slant Total Electron Content (STEC) values, with accuracies of around 1 Total Electron Content Unit (TECU). Notice that the nominal accuracy of the Global Ionospheric Maps (GIMs) from IGS is 2-8 TECU in vertical (i.e., not slant) [16].

The accurate Fast-PPP STEC estimates can be used to reduce the transient period of the ambiguity estimation, because i) it is an absolute determination (i.e., undifferenced, unlike other techniques such as RTK); ii) unambiguous; and iii) several times more precise than code measurements. The unbiased nature of the Fast-PPP ionosphere leaves untouched the final accuracy (from the converged filter). The Fast-PPP ionosphere calculation at the CPF is described next.

Aside from satellite orbits and clocks, the Fast-PPP CPF also calculates the carrier-phase ambiguities for the frequencies involved (for instance, the GPS L1 and L2 in this work). Once they have been accurately estimated from accurate geodetic modeling, the CPF can fix them to their integer values. In this way, the left hand of (1) is the unambiguous geometry-free \((LI - LI)\) combination of carrier-phase measurements \(LI^i\), between the receiver \(i\) and the satellite \(j\), once the ambiguity of this combination, \(BI^i_j\), has been corrected. This is the input data for the ionospheric filter, which is very precise, with only the noise of the carrier-phase (i.e., at the level of some millimeters)

\[
LI^i_j - BI^i_j = STEC^i_j + DCB_i - DCB_j.
\]

In this equation, unambiguous carrier-phase measurements can be separated, as in [19], in the ionospheric delay term, \(STEC^i_j\), and a constant part: the satellite and receiver DCBs, \(DCB_i\) and \(DCB_j\), respectively. Each \(STEC^i_j\) is modeled with a lineal combination of the Vertical Total Electron Content (VTEC) delays, \(VTEC_k\), on a set of Ionospheric Grid Point (IGPs) every 3° in two layers (see [20])

\[
STEC^i_j = \sum \alpha_k \cdot VTEC_k
\]

where \(\alpha_k\) is a factor, which includes the mapping function (i.e., obliquity factor at each layer) and the interpolation from the IGPs to the Ionospheric Pierce Point (IPP). Because \(\alpha_k\) depends on the geometry, any change in the ionospheric model geometry (layers height, grid size, etc.) affects to the DCB estimation, when (1) is used.

The use of a two-layer model is motivated by the fact that ionosphere can be separated into two main components: the lower component, or ionosphere and the upper component, or plasmasphere. Each component has a different height distribution and dynamic evolution, and it is particularly important to consider both in low latitudes.

After a convergence time of several hours (the Fast-PPP CPF starts a day before), the CPF estimates the values and the confidence bounds of the VTECs and the DCBs with typical accuracies of the order of 1 TECU.

A. Fast-PPP Ionospheric Model Assessment

The quality of any ionospheric model for GNSS navigation can be assessed as follows. The left-hand side of (1) can be considered, except for the DCBs, as true ionospheric delays, due to the fixed \(BI\). Thence, any ionospheric model \(STEC_{model}\) shall differ only from the unambiguous \((LI - BI)\), in the hardware delays (i.e., a receiver constant \(K_i\) plus a satellite constant \(K_j\))

\[
STEC^i_{model,j} - (LI^i_j - BI^i_j) = K_i + K_j.
\]

The \(K_i\) and \(K_j\) on the right-hand of the previous equation are estimated by a least squares process. In this way, the postfit residuals obtained from this adjustment provide a metric to assess the quality of any ionospheric model. Notice that any common bias in \(STEC_{model}\) affecting both satellites or receivers will not affect the user navigation solution nor be included in the test results, since it is absorbed into the receiver and satellite constants. In this way, this test is very adequate for assessing ionospheric models tailored for navigation.

In order to have a reference, the test results of the Fast-PPP STECs are compared with the STECs obtained from the well-known IGS GIMs using the standard IONosphere map EXchange format (IONEX) [21]. The residuals from the \(R\)'s fits in (3) to measurements every 30 s, are shown in Fig. 3, using one RMS curve for all reference stations used by the ionospheric filter. The axes local time (top plot) and latitude (bottom plot) most clearly illustrate the differences between models.

On the one hand, the final (postprocessed) IGS combined GIMs accuracies, using an update time of 2 h, are of the order of 1-5 TECUs, which is better than the published accuracies previously mentioned. The estimates of the Technical University of Catalonia (UPC) GIM slightly improve when using a 15-m sampling rate, indicating that the refresh time is not a key factor, at least, for the scenario considered.

On the other hand, it is shown the accuracy of the Fast-PPP ionospheric model, calculated in real time with a sampling rate of 5 m and fixing the ambiguities. It can be seen that the two-layer ionosphere (squares) is the most accurate estimate, clearly better than 1 TECU for all local times and latitudes. The Fast-PPP model using a single-layer grid (triangles) is also included to show that equatorial latitudes cannot be described accurately with this approach, as indicated previously.

From these results, the advantages of using the Fast-PPP method proposed instead of using the IGS GIMs are evident, particularly at local times around or after noon and for low
the results, depending on the distance from the stations used to derive the ionospheric model, and any ionospheric perturbation deviating from the linearity assumed (e.g., Travelling Ionospheric Disturbance, scintillation, etc.).

V. FAST-PPP USER STRATEGY

User strategies are traditionally conditioned by receiver capabilities (i.e., number of frequencies and type of observables). Mass-market single-frequency code receivers rely on ionospheric models such as Klobuchar [22] or NeQuick [23]. Nevertheless, subtracting the modeled delay from the measurements involves a degree of mismodeling, an uncertainty that is not usually accounted for in the covariance matrix of the navigation filter. Code and phase single-frequency receivers can benefit from the GRAPHIC [15] combination, free of ionospheric mismodeling since this error term is removed. However, accuracy and convergence are affected due to the estimation of coordinates from a combination with half of the noise code but containing the ambiguities. Finally, dual-frequency code and carrier-phase receivers typically use PPP.

The Fast-PPP navigation filter keeps code and carrier-phase measurements separate from externally calculated CPF corrections, included as additional equations. This is similar to the weighted ionospheric approach described in [24], but in absolute (i.e., undifferenced) mode. The classical PPP dual-frequency positioning system is presented in (4)-(7), without combining the code and carrier (L_1, L_2, P_1, P_2) measurements. Additional terms are the ionospheric contribution in terms of Total Electron Content (TEC) and the DCB split into the rover and satellite contributions; DCB_r and DCB_s.

$$P_1^j = \rho^j + c(\delta t - \delta t^j) + m_1^j \Delta ZTD_{wet}$$
$$+ \alpha_1 (STEC^j + DCB_r - DCB_s^j) + \varepsilon_1^{L_1}$$
(4)

$$L_1^j = \rho^j + c(\delta t - \delta t^j) + m_1^j \Delta ZTD_{wet} + B_1^j + \gamma_1 w$$
$$- \alpha_1 (STEC^j + DCB_r - DCB_s^j) + \varepsilon_1^{L_1}$$
(5)

$$P_2^j = \rho^j + c(\delta t - \delta t^j) + m_1^j \Delta ZTD_{wet}$$
$$+ \alpha_2 (STEC^j + DCB_r - DCB_s^j) + \varepsilon_2^{L_2}$$
(6)

$$L_2^j = \rho^j + c(\delta t - \delta t^j) + m_1^j \Delta ZTD_{wet} + B_2^j + \gamma_2 w$$
$$- \alpha_2 (STEC^j + DCB_r - DCB_s^j) + \varepsilon_2^{L_2}$$
(7)

where ρ^j is the euclidean distance from the rover to the jth satellite antenna phase centers, and δt and δt^j are respectively the rover and satellite clocks scaled by c the speed of light in vacuum. The tropospheric mapping m_1^j accounts for the projected zenith-to-slant delay. Tropospheric a priori nominals (hydrostatic and wet) are modeled and subtracted from the measurements, a wet residual ΔZTD_{wet} is estimated. A similar approach is used with the relative rotation (wind-up), w, between satellites and the rover: the satellite contribution is modeled and subtracted from the carrier-phase measurements, the remaining part (i.e., the rover orientation) has to be estimated, since its contribution is different for $L1$ and $L2$. Frequency ratios are $\alpha_1 = 1/(\gamma - 1)$ and $\alpha_2 = \gamma \alpha_1$ with $\gamma = (f_1/f_2)^2$. At each epoch t, with N_s satellites in view and two frequencies, there are $7 * N_s$ equations and $5 * N_s + 7$ unknowns. Single-frequency users only employ (4)–(5).
constellations are added simply introducing an interconstellation clock bias unknown and the associated DCB. Fast-PPP corrections: i) satellite clocks; ii) the slant ionospheric delay computed from the two-layer model; iii) the code biases, DCB^j_{cor}, and iv) the fractional part of the ambiguities. The δB^j_{cor} in each equation accounts for the noise, with a standard deviation $\sigma_{\delta B^j_{cor}}$ known and the associated DCB. Fast-PPP corrections is relevant, but also the confidence level (sigmas) of the corrections. Corrections are properly bounded by the Fast-PPP CPF, since are key to achieving high-accuracy navigation with adequate confidence limits (formal errors).

The ε in each equation accounts for the noise, with a standard deviation σ_{ε}. The σ_{ε} is used in the Fast-PPP design matrix to weight the corrections and the associated DCB. Fast-PPP CPF, since are key to achieving high-accuracy navigation with adequate confidence limits (formal errors).

The CPF determines the fractional part of the satellite ambiguities for each frequency f_i (and associated λ_i). Their change [13] allows its broadcasting as another correction, δB^i_{cor}. The rover part of the fractional ambiguity is canceled by differencing the carrier-phase ambiguities, B^i_1, with respect to a reference satellite, B^0_1. Thence, integer values of the ambiguities N^i_1 are constrained (i.e., fixed) in the navigation filter with the following equation:

$$\begin{align*}
\left(B^i_1 - \delta B^i_{cor} \right) - \left(B^0_1 - \delta B^0_{cor} \right) &= \lambda_i \left(N^i_1 - N^0_1 \right).
\end{align*}$$

VI. USER POSITIONING

This section briefly describes how the Fast-PPP navigation technique was assessed for DoY 150 of year 2011. The worldwide distribution of permanent receivers, shown as green dots in Fig. 1, has been processed in pure kinematic mode to emulate rovers. Table II shows their coordinates and the distance to the nearest station used to calculate the ionospheric model. Most of the distances range from 100 to 1300 km, more than one order of magnitude greater than typical RTK or Network RTK baselines. The rovers used all Fast-PPP corrections: satellite orbits and clocks, the dual-layer ionospheric model together with the DCBs, and the fractional part of the ambiguities.

A. Ionospheric Conditions of the Assessment

Because the ionospheric corrections are the core of the Fast-PPP technique, it is important to characterize the ionospheric activity during the experiment compared with the conditions in other past assessments, with the same technique, but on a regional scale. In this regard, the hourly VTECs computed from the IGS final GIMs are shown in the top plot of Fig. 5. The VTEC values of the current work (year 2011) at a South-East Asia (SEA) region (crosses) and at a European location (triangles), are shown to be 3 up to 5 times greater than previous Fast-PPP experiments: the strict real-time assessment of 2012 presented in [25] (squares) and the previously mentioned [13] with data of 2009 (circles).

The mean solar radio flux of the day, 112×10^{-22} W/(m² Hz), is a medium-to-high value with respect the solar cycle range. In the hourly global geomagnetic Dst index [26] shown in the middle plot of Fig. 5, we can see the recovery period after a geomagnetic storm occurring on DoY 148, but navigation is assessed on a not particularly perturbed day.

TABLE II

<table>
<thead>
<tr>
<th>name</th>
<th>coordinates</th>
<th>distance</th>
<th>name</th>
<th>coordinates</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsa</td>
<td>65°W 25°S</td>
<td>1292 km</td>
<td>ebre</td>
<td>00°E 41°N</td>
<td>227 km</td>
</tr>
<tr>
<td>nurk</td>
<td>30°E 02°S</td>
<td>761 km</td>
<td>tiku</td>
<td>09°E 00°S</td>
<td>217 km</td>
</tr>
<tr>
<td>acor</td>
<td>68°W 43°N</td>
<td>491 km</td>
<td>onsza</td>
<td>12°E 57°N</td>
<td>188 km</td>
</tr>
<tr>
<td>vfch</td>
<td>02°E 47°N</td>
<td>415 km</td>
<td>smud</td>
<td>10°E 55°N</td>
<td>185 km</td>
</tr>
<tr>
<td>pbbb</td>
<td>10°E 52°N</td>
<td>402 km</td>
<td>eusk</td>
<td>07°E 50°N</td>
<td>170 km</td>
</tr>
<tr>
<td>cesc</td>
<td>09°W 39°N</td>
<td>376 km</td>
<td>pbjo</td>
<td>09°E 01°S</td>
<td>95 km</td>
</tr>
<tr>
<td>klop</td>
<td>09°E 50°N</td>
<td>317 km</td>
<td>lbhu</td>
<td>98°E 00°N</td>
<td>94 km</td>
</tr>
<tr>
<td>pots</td>
<td>13°E 52°N</td>
<td>299 km</td>
<td>ejsi</td>
<td>06°E 51°N</td>
<td>94 km</td>
</tr>
<tr>
<td>osls</td>
<td>10°E 60°N</td>
<td>283 km</td>
<td>dent</td>
<td>03°E 51°N</td>
<td>69 km</td>
</tr>
<tr>
<td>hers</td>
<td>00°E 51°N</td>
<td>283 km</td>
<td>pblo</td>
<td>98°E 00°N</td>
<td>47 km</td>
</tr>
</tbody>
</table>

Fig. 4. Example (for rover pbjo) of the standard deviations used in the design matrix to normalize pseudorange (circles) and carrier-phase measurements (crosses), and Fast-PPP corrections: ionosphere (dots), satellite DCBs (stars), and satellite clocks (pluses).
An indicator of ionospheric activity that is most sensitive to the regional behavior (and particularly, to the lack of linearity of the ionosphere) is the RMS of the Along Arc Tec Rate (AATR) [27]. Moderate values of AATR are shown in the bottom plot for some stations of the ionospheric network, indicating that no scintillation occurred. This is in line with [27], where it was shown that these days of the year (May–June) typically present low scintillation problems. Further studies under ionospheric storms or severe scintillations will be carried out in future works, to prove the role of ionosphere in the rapid phase re-acquisition after massive cycle-slips.

B. Fast-PPP Positioning Results

Fast-PPP single- and dual-frequency positioning (in kinematic mode) will be shown to reduce the convergence time of the aforementioned ionosphere-free strategies, namely GRAPHIC and classic PPP. In order to assess such improvement, the 24 h of actual GNSS data collection (with a sampling rate of 30 s) are split in 12 intervals of 2 h. Each 2 h window is processed independently after applying a full reset to the navigation filter. Then, we can express the navigation error as a function of the time since the last reset for every of the 12 windows. The RMS of such error is computed (i.e., merging the 12 resets) for the horizontal and vertical components and the associated 3-D formal errors.

The impact of the ionospheric modeling in the user domain is assessed by comparing the real-time Fast-PPP ionosphere and a set of corrections from the final combined postprocessed IGS GIM. Similar standard deviations in (9) than with Fast-PPP have been used after augmenting the RMS values present in the IGS GIM. This is done in order to optimize the navigation solution when the IGS GIMs are used. Indeed, the more realistic the sigmas are (i.e., properly bounding the ionospheric errors), the better the navigation is performed.

Examples of user accuracies together with their 3-D formal error are shown in Fig. 6 for single- and dual-frequency navigation modes. The Fast-PPP single-frequency (red) horizontal and vertical performance is remarkable, from the beginning of a cold start with errors of some 30 to 80 cm to final converged values of around 20 to 30 cm, respectively. Single-frequency Fast-PPP converges several times faster to the GRAPHIC (ionosphere-free) solution plotted in black, whereas the IGS GIMs (green) present a biased solution, particularly for the equatorial rovers. This improvement is at the level of the aforementioned ionospheric test shown in Fig. 3.

While in single-frequency navigation Fast-PPP improves the accuracy, in dual-frequency (pink) it reduces the convergence time needed to achieve a certain level of accuracy, taking into account the confidence (sigma) in the solution, as shown in the right row of Fig. 6. In order to quantify the reduction in the convergence time, the following metric is adopted: 1) A threshold for the sigma is set at two times the stationary value of the classical PPP strategy (blue), namely, 15 and 22 cm for the horizontal and vertical components, respectively. 2) An accuracy threshold is set at three times the final accuracy in each horizontal and vertical component (≈20 cm), since rovers are navigated in kinematic mode. Under these criteria, the Fast-PPP horizontal component reduces the convergence time of PPP the most, with a reduction of 40% to 90%, whereas the vertical component is reduced by 20% to 60% for the distance range between 100 and 500 km, which can be taken as the maximum distance to the nearest reference station for which ionospheric corrections accelerate the positioning. Moreover, Fast-PPP performance for distances over 800 km or isolated rovers is never worse than the GRAPHIC and PPP solutions, which are taken as the worst case reference. This is not the case for the IGS GIMs-based single- and dual-frequency navigation shown in green and orange, respectively.

Having shown the improvements in accuracy (single-frequency) and convergence time (dual-frequency), the next factor to assess is the reliability of the positioning, derived from the confidence bounds associated with the corrections. This is done by means of the Stanford plots, although Fast-PPP is not intended for safety-of-life applications. For this assessment, we have used the 24 h of data for all rovers in Table II without resetting the user state. Horizontal and vertical 95% accuracies of Fig. 7 are better than 40 and 60 cm for single-frequency users and 9 and 16 cm for dual-frequency users. Safe margins are observed for all rovers across the extensive network where
several different ionospheric conditions are mixed. Vertical and horizontal protection levels (VPL and HPL) are $VPL = 5.33\sigma_V$ and $HPL = 6.00\sigma_H$ [28].

VII. CONCLUSION

An end-to-end performance assessment of the Fast-PPP technique at a planetary scale has been presented. Accuracies of the CPF real-time precise satellite orbits and clocks have been shown to be of the order of IGS real-time products, respectively, a few centimeters and a few tenths of a nanosecond. This enables a global PPP service, enhanced by the Fast-PPP CPF determinations of the fractional part of the ambiguities, to add the capability of global undifferenced ambiguity fixing.

Once that satellite orbits and clocks accurate to some centimeters are made available to users in real time, the limiting
factor in high-accuracy positioning is the ionospheric delay. A dedicated metric has been introduced to assess the suitability of ionospheric models for satellite-based navigation. The two-layer, ambiguity-fixed Fast-PPP ionospheric real-time estimates are accurate at the level of 1 TECU (16 cm in L1), and can be used in combination with precise orbits and clocks maintaining their accuracy. This is not the case for the IGS GIMs, with accuracies up to one order of magnitude worse. It has been shown, under medium to high solar flux conditions, that the difference between the two ionospheric models is greater at low latitudes and around local noon.

A criterion has been introduced to assess the convergence time based on the accuracy and the confidence level of the solution. Fast-PPP dual-frequency users also benefit from the precise ionospheric modeling through a several-fold reduction in the convergence time compared with the classic PPP solutions, not only in mid-latitude regions but also under more challenging ionospheric conditions such as those found in the equatorial region. This is particularly notable for rovers located up to 500 km away from the nearest reference station, which makes feasible the usage of a sparse network. Further or isolated rovers only allow a slight improvement, never worsening the current ionosphere-free solutions, due to the realistic confidence levels calculated at the Fast-PPP CPF.

Finally, it has been shown that accuracies of single-frequency users are directly affected by the quality of the ionospheric estimates. Results confirm an improvement in the ionospheric model compared with IGS GIMs, particularly at low latitudes.
On a planetary scale, Fast-PPP single- and dual-frequency navigation is safely bounded under protection levels of the order of 3.5 and 1.0 m, respectively.

ACKNOWLEDGMENT

The authors acknowledge the use of data from the International GNSS Service and the Sumatran GPS Array (SuGAr).

REFERENCES

Adrià Rovira-Garcia received the aerospace engineering degree from the Technical University of Catalonia (UPC), Barcelona, Spain, in March 2010. He is currently working toward the Ph.D. degree in the Aerospace Science and Technology and Aerospace Doctoral Program of UPC. In January 2012, the European Space Agency granted a Ph.D. cosponsorship fellowship together with the industrial partner FUGRO. Since then, his research is focused on enhanced algorithms related with the real-time Fast-PPP technique.

José Miguel Juan Since 1988, he has been with the Department of Applied Physics, Technical University of Catalonia (UPC), Barcelona, Spain.

He was granted tenure and promoted to Associate Professor in 1991. He obtained the National accreditation for Full Professor in 2011. He has published over 70 papers in peer-reviewed journals and more than 150 works in meeting proceedings, with four best paper awards from the US Institute of Navigation. He is a coauthor of five patents on GNSS and four books on GNSS Data Processing.

Jaume Sanz has been with the Department of Applied Mathematics IV, Technical University of Catalonia (UPC), Barcelona, Spain since 1983. There, he was granted tenure and promoted to Associate Professor in 1988. He obtained the National accreditation for Full Professor in 2011. He has published over 70 papers in peer-reviewed journals and more than 150 works in meeting proceedings, with four best paper awards from the U.S. Institute of Navigation. He is a coauthor of five patents on GNSS and four books on GNSS Data Processing.

Guillermo González-Casado is with the Department of Applied Mathematics II, Technical University of Catalonia (UPC), Barcelona, Spain, being granted tenure and promoted to Associate Professor in 1999. His current research interests are focused on ionospheric modeling based in GNSS observations and radio occultations, Ground-Based Augmentation Systems, and the study and development of GNSS applications in general. He has published about 20 papers in peer-reviewed journals and more than 25 works in meeting proceedings.